
Improving Support for Java Exceptions
and Inheritance in VerCors
Bob Rubbens, BSc.
Committee: Prof. Dr. Marieke Huisman, Dr. Luı́s Ferreira Pires, Sophie Lathouwers, MSc.

Overview

Verification of concurrent software

Deductive verification

Exceptions

Inheritance

Conclusion

Improving Support for Java Exceptions and Inheritance in VerCors May 2, 2023 2 / 57

Overview

Verification of concurrent software

Deductive verification

Exceptions

Inheritance

Conclusion

Improving Support for Java Exceptions and Inheritance in VerCors May 2, 2023 3 / 57

Verification of concurrent software

Verification of concurrent software?

Improving Support for Java Exceptions and Inheritance in VerCors May 2, 2023 4 / 57

Verification of concurrent software

Verification of concurrent software?

Improving Support for Java Exceptions and Inheritance in VerCors May 2, 2023 4 / 57

“Verification”

I Verification:
1. Verify that something works
2. In relation to a specification

I Specification of a coffee machine

Improving Support for Java Exceptions and Inheritance in VerCors May 2, 2023 5 / 57

Coffee machine specification

Action:
When button is pushed

Result:
Coffee must be produced

The challenge: verify an implementation against a specification
automatically, statically

Improving Support for Java Exceptions and Inheritance in VerCors May 2, 2023 6 / 57

Coffee machine specification

Action:
When button is pushed

Result:
Coffee must be produced

The challenge: verify an implementation against a specification
automatically, statically

Improving Support for Java Exceptions and Inheritance in VerCors May 2, 2023 6 / 57

“Concurrent”

I Concurrency means: interleaving of processes
I For cappuccino, need to foam milk & make coffee

Cappuccino button pressed

Make coffee Foam milk

Blend cappuccino

Improving Support for Java Exceptions and Inheritance in VerCors May 2, 2023 7 / 57

“Software”

I Anything that regulates daily life through a computer or electronic device
1. WhatsApp
2. PowerPoint
3. Internet bankieren

Improving Support for Java Exceptions and Inheritance in VerCors May 2, 2023 8 / 57

Verification of concurrent software

Verification
Ensure it works

of concurrent
Interleaved

software
Software

!

Improving Support for Java Exceptions and Inheritance in VerCors May 2, 2023 9 / 57

Why verification?

I Design is trial and error
I Prevent bugs
I Automation

Improving Support for Java Exceptions and Inheritance in VerCors May 2, 2023 10 / 57

Why concurrency?

(from Stanford CPUDB)

Improving Support for Java Exceptions and Inheritance in VerCors May 2, 2023 11 / 57

Why software?

I Society has become dependant on software
I Therefore, we want to verify it

Improving Support for Java Exceptions and Inheritance in VerCors May 2, 2023 12 / 57

Java

Improving Support for Java Exceptions and Inheritance in VerCors May 2, 2023 13 / 57

Verify Java?

I Yes, with static verifiers!
I One example, topic of this presentation: VerCors
I Others:

I Verifast
I jStar
I OpenJML
I KeY
I And more...

Improving Support for Java Exceptions and Inheritance in VerCors May 2, 2023 14 / 57

VerCors

I Static deductive verifier for concurrent software
I Developed at the FMT group, University of Twente
I Java, C, OpenCL, PVL
I Data race freedom, memory safety, functional correctness

Transformations

VerCors
Tool

Viper
Silver

Silicon Z3

OpenCL

OpenMP

PVL

Java

VerCors architecture

Improving Support for Java Exceptions and Inheritance in VerCors May 2, 2023 15 / 57

VerCors usage

VerCors

Program
Open coffee tube

Specification
Produces coffee

Pass 3Fail 7

Improving Support for Java Exceptions and Inheritance in VerCors May 2, 2023 16 / 57

So, why are there bugs?

I Problem: support for commercial programming languages
I Verifast, Nagini

I “Advanced” language features
I exceptions, inheritance, lambdas, streams

Improving Support for Java Exceptions and Inheritance in VerCors May 2, 2023 17 / 57

So, why are there bugs?

I Problem: support for commercial programming languages
I Verifast, Nagini

I “Advanced” language features
I exceptions, inheritance, lambdas, streams

Improving Support for Java Exceptions and Inheritance in VerCors May 2, 2023 17 / 57

Overview

Verification of concurrent software

Deductive verification

Exceptions

Inheritance

Conclusion

Improving Support for Java Exceptions and Inheritance in VerCors May 2, 2023 18 / 57

Deductive verification of Java

Using JML annotations in comments:
1 //@ requires a >= 0 && b >= 0;
2 //@ ensures a > b ? \ result == a : \ result == b;
3 int positive_max (int a, int b) {
4 //@ assert a >= 0;
5 if (a > b) {
6 return a;
7 } else {
8 return b;
9 }

10 }
11
12 positive_max (-1, 5); // Fail
13 int x = positive_max (4, 10); // Pass
14 //@ assert x == 10; // Pass

Improving Support for Java Exceptions and Inheritance in VerCors May 2, 2023 19 / 57

Separation logic

I Developed by John C. Reynolds, Peter O’Hearn, Samin Ishtiaq, and Hongseok
Yang.

I Intended to describe ownership in programs with references.
I Turns out to also work surprisingly well for concurrent programs! (with some

extensions)

Improving Support for Java Exceptions and Inheritance in VerCors May 2, 2023 20 / 57

Permissions

I Perm(x , f)
I Means:

I Given heap location x ...
I f = 1 =⇒ Read/write x
I 0 < f < 1 =⇒ Read x

I Examples:
I Perm(x, 1/1)
I Perm(this.y, 1/2)
I Perm(obj.field, 3/6)

Improving Support for Java Exceptions and Inheritance in VerCors May 2, 2023 21 / 57

Permissions

I A permission is a resource
I Finite: split/merge, but not duplicate
I Examples:

1 assert Perm(x, 1/1);
2 assert Perm(x, 1/2) ** Perm(x, 1/2);
3 assert Perm(x, 1/1);
4 assert Perm(x, 1/1) ** Perm(x, 1/1); // Fails!

Improving Support for Java Exceptions and Inheritance in VerCors May 2, 2023 22 / 57

VerCors backend: Viper

I Developed at ETH Zürich
I Verifies simple language with permissions
I “Silver”

Improving Support for Java Exceptions and Inheritance in VerCors May 2, 2023 23 / 57

Java to Silver

1: Java
1 //@ ensures \ result == 3;
2 void m() {
3 int x = 2;
4 return x + 1;
5 }

2: Silver
1 method m()
2 returns (res: Int)
3 ensures res == 3
4 {
5 var x: Int;
6 x := 2;
7 res := x + 1;
8 }

Improving Support for Java Exceptions and Inheritance in VerCors May 2, 2023 24 / 57

Overview

Verification of concurrent software

Deductive verification

Exceptions

Inheritance

Conclusion

Improving Support for Java Exceptions and Inheritance in VerCors May 2, 2023 25 / 57

Exceptions

1 void close () throws Exception {
2 if (f == null) {
3 throw new Exception ("f is null");
4 } else {
5 f.close ();
6 }
7 }
8
9 void doWork () {

10 try {
11 close ();
12 } catch (Exception e) {
13 print(" Something went wrong!");
14 }
15 }

Improving Support for Java Exceptions and Inheritance in VerCors May 2, 2023 26 / 57

Exception specification

1 //@ signals (Exception e) f == null;
2 void close () throws Exception {
3 if (f == null) {
4 throw new Exception ("f is null");
5 } else {
6 f.close ();
7 }
8 }

Improving Support for Java Exceptions and Inheritance in VerCors May 2, 2023 27 / 57

Abrupt termination

1 void m() {
2 l: while (p()) {
3 if (p()) {
4 throw new RuntimeException ();
5 } else {
6 break l;
7 }
8 }
9 }

No problem, right?

Improving Support for Java Exceptions and Inheritance in VerCors May 2, 2023 28 / 57

Abrupt termination

1 void m() {
2 l: while (p()) {
3 if (p()) {
4 throw new RuntimeException ();
5 } else {
6 break l;
7 }
8 }
9 }

No problem, right?

Improving Support for Java Exceptions and Inheritance in VerCors May 2, 2023 28 / 57

Abrupt termination to goto

1 void close () {
2 l: while (p()) {
3 if (p()) {
4 goto close_end ;
5 } else {
6 goto l_end;
7 }
8 } l_end:
9 close_end : }

Improving Support for Java Exceptions and Inheritance in VerCors May 2, 2023 29 / 57

Abrupt termination & finally

1 void close () {
2 while(p()) {
3 try {
4 if (p()) {
5 throw new RuntimeException ();
6 } else {
7 break;
8 }
9 } finally {

10
11 }
12 }
13 }

“finally encoding problem”

Improving Support for Java Exceptions and Inheritance in VerCors May 2, 2023 30 / 57

Abrupt termination & finally

1 void close () {
2 while(p()) {
3 try {
4 if (p()) {
5 throw new RuntimeException ();
6 } else {
7 break;
8 }
9 } finally {

10
11 }
12 }
13 }

“finally encoding problem”

Improving Support for Java Exceptions and Inheritance in VerCors May 2, 2023 30 / 57

Abrupt termination & finally

1 void close () {
2 while(p()) {
3 try {
4 if (p()) {
5 throw new RuntimeException ();
6 } else {
7 break;
8 }
9 } finally {

10
11 }
12 }
13 }

“finally encoding problem”

Improving Support for Java Exceptions and Inheritance in VerCors May 2, 2023 30 / 57

Approaches to the finally encoding problem

1. Inlining
I Inflates AST
I Duplicates proof obligations

2. Auxiliary state
3. Via exceptions

Improving Support for Java Exceptions and Inheritance in VerCors May 2, 2023 31 / 57

Approaches to the finally encoding problem

1. Inlining
2. Auxiliary state

1 if (p()) {
2 break ;
3 } else {
4 return ;
5 }

⇒

1 if (p()) {
2 mode = BREAK;
3 goto finally ;
4 } else {
5 mode = RETURN ;
6 goto finally ;
7 }

3. Via exceptions

Improving Support for Java Exceptions and Inheritance in VerCors May 2, 2023 31 / 57

Approaches to the finally encoding problem

1. Inlining
2. Auxiliary state

I Creates constants to keep track of in the presence of labeled break
I Leads to non-modular finally

3. Via exceptions

Improving Support for Java Exceptions and Inheritance in VerCors May 2, 2023 31 / 57

Approaches to the finally encoding problem

1. Inlining
2. Auxiliary state
3. Via exceptions

Improving Support for Java Exceptions and Inheritance in VerCors May 2, 2023 31 / 57

Encode finally via exceptions

Consider finally with only exceptions:

1 try {
2 ...
3 } catch (Exception e) {
4 ...
5 } finally {
6 ...
7 if (exception) {
8 goto next_handler ;
9 } else {

10 goto after;
11 }
12 }
13 after:

Improving Support for Java Exceptions and Inheritance in VerCors May 2, 2023 32 / 57

Encode finally via exceptions

I This only works if there is only exceptional control flow
I That is possible:

1 l: while (p()) {
2 ...
3 break l;
4 ...
5 }

⇒

1 try {
2 while (p()) {
3 ...
4 throw new L();
5 ...
6 }
7 } catch (L e) {};

Improving Support for Java Exceptions and Inheritance in VerCors May 2, 2023 33 / 57

Implemented abrupt termination transformation

Preprocessing

finally?

break, return
to goto

break, return
to throw

Exceptions
to goto

No Yes

Improving Support for Java Exceptions and Inheritance in VerCors May 2, 2023 34 / 57

Overview

Verification of concurrent software

Deductive verification

Exceptions

Inheritance

Conclusion

Improving Support for Java Exceptions and Inheritance in VerCors May 2, 2023 35 / 57

Coffee machine inheritance

Parent, super Child, sub

Improving Support for Java Exceptions and Inheritance in VerCors May 2, 2023 36 / 57

Coffee machine inheritance

Parent, super Child, sub
Improving Support for Java Exceptions and Inheritance in VerCors May 2, 2023 36 / 57

Inheritance example

1 class Cell {
2 int val;
3 void set(int newVal) {
4 val = newVal ;
5 }
6 }
7
8 class ReCell extends Cell {
9 int bak;

10 void set(int newVal) {
11 bak = super.get ();
12 super .set(newVal);
13 }
14 }

Improving Support for Java Exceptions and Inheritance in VerCors May 2, 2023 37 / 57

Example with plain contracts

1 //@ requires true;
2 //@ ensures val == newVal ;
3 void Cell.set(int newVal) {
4 val = newVal ;
5 }
6
7 //@ requires true;
8 //@ ensures bak == \old(val) && val == newVal ;
9 void ReCell .set(int newVal) {

10 bak = super.get ();
11 super.set(newVal);
12 }

Improving Support for Java Exceptions and Inheritance in VerCors May 2, 2023 38 / 57

Behavioural subtyping, informally

Wherever a parent method is used, a child method should also be
usable.

In terms of contracts:

Definition (Method Subtyping)
Given a method requires P; ensures Q; f () and f ′ that overrides it, f ′ is a behavioral
subtype of f if:
I P =⇒ P ′

I Q′ =⇒ Q

Improving Support for Java Exceptions and Inheritance in VerCors May 2, 2023 39 / 57

Behavioural subtyping, informally

Wherever a parent method is used, a child method should also be
usable.

In terms of contracts:

Definition (Method Subtyping)
Given a method requires P; ensures Q; f () and f ′ that overrides it, f ′ is a behavioral
subtype of f if:
I P =⇒ P ′

I Q′ =⇒ Q

Improving Support for Java Exceptions and Inheritance in VerCors May 2, 2023 39 / 57

Plain contracts subtype

1 //@ requires true;
2 //@ ensures val == newVal ;
3 void Cell.set(int newVal);
4
5 //@ requires true;
6 //@ ensures bak == \old(val) && val == newVal ;
7 void ReCell .set(int newVal);

true ==> true

(bak == \old(val) && val == newVal)
==> (val == newVal)

Improving Support for Java Exceptions and Inheritance in VerCors May 2, 2023 40 / 57

Example with separation logic contracts

1 //@ requires Perm(val , 1/1);
2 //@ ensures Perm(val , 1/1) ** val == newVal ;
3 void Cell.set(int newVal);
4
5 //@ requires Perm(val , 1/1) ** Perm(bak , 1/1);
6 /*@ ensures Perm(val , 1/1) ** Perm(bak , 1/1)
7 ** bak == \old(val)
8 ** val == newVal ; @*/
9 void ReCell .set(int newVal);

pre - condition Cell ==> pre - condition ReCell

Perm(val , 1/1) ==> Perm(val , 1/1) ** Perm(bak , 1/1)

7 Not subtype

Improving Support for Java Exceptions and Inheritance in VerCors May 2, 2023 41 / 57

Example with separation logic contracts

1 //@ requires Perm(val , 1/1);
2 //@ ensures Perm(val , 1/1) ** val == newVal ;
3 void Cell.set(int newVal);
4
5 //@ requires Perm(val , 1/1) ** Perm(bak , 1/1);
6 /*@ ensures Perm(val , 1/1) ** Perm(bak , 1/1)
7 ** bak == \old(val)
8 ** val == newVal ; @*/
9 void ReCell .set(int newVal);

pre - condition Cell ==> pre - condition ReCell

Perm(val , 1/1) ==> Perm(val , 1/1) ** Perm(bak , 1/1)

7 Not subtype

Improving Support for Java Exceptions and Inheritance in VerCors May 2, 2023 41 / 57

Example with separation logic contracts

1 //@ requires Perm(val , 1/1);
2 //@ ensures Perm(val , 1/1) ** val == newVal ;
3 void Cell.set(int newVal);
4
5 //@ requires Perm(val , 1/1) ** Perm(bak , 1/1);
6 /*@ ensures Perm(val , 1/1) ** Perm(bak , 1/1)
7 ** bak == \old(val)
8 ** val == newVal ; @*/
9 void ReCell .set(int newVal);

pre - condition Cell ==> pre - condition ReCell

Perm(val , 1/1) ==> Perm(val , 1/1) ** Perm(bak , 1/1)

7 Not subtype

Improving Support for Java Exceptions and Inheritance in VerCors May 2, 2023 41 / 57

Solution: abstract predicate families

I Abbreviated: APF
I Defines “name” shared between classes
I Class can choose “contents”
I Two forms:

I “Generic”: state()
I “Specific”: state@Cell()

I “Generic” ** dynamic type ⇐⇒ “specific”
I “Specific” ⇐⇒ “contents”

Improving Support for Java Exceptions and Inheritance in VerCors May 2, 2023 42 / 57

APF: Cell

1 /*@ resource state(int x) = Perm(val , 1/1)
2 ** val == x; @*/
3
4 //@ requires state(oldVal);
5 //@ ensures state(newVal);
6 void Cell.set(int newVal) {
7 //@ unfold state(oldVal);
8 //@ unfold state@Cell (oldVal);
9 //@ assert Perm(val , 1/1);

10 }
11
12 //@ requires state(oldVal , oldBak);
13 //@ ensures state(newVal , oldVal);
14 void ReCell .set(int newVal);

Improving Support for Java Exceptions and Inheritance in VerCors May 2, 2023 43 / 57

APF: Behavioural subtype?

state(oldVal) ==> state(oldVal , oldBak)

state(newVal , oldVal) ==> state(newVal)

3 APFs allow behavioural subtyping

Improving Support for Java Exceptions and Inheritance in VerCors May 2, 2023 44 / 57

APF: Behavioural subtype?

state(oldVal) ==> state(oldVal , oldBak)

state(newVal , oldVal) ==> state(newVal)

3 APFs allow behavioural subtyping

Improving Support for Java Exceptions and Inheritance in VerCors May 2, 2023 44 / 57

APF exchange problem

I “Generic” ** dynamic type ⇐⇒ “specific”
I Dynamic type is not known: only subtype

I super

Improving Support for Java Exceptions and Inheritance in VerCors May 2, 2023 45 / 57

APF exchange problem

1 //@ requires state(oldVal);
2 void Cell.set(int newVal) {
3 //@ assert this == Cell; // Maybe .. .?
4 //@ assert this == ReCell ; // Maybe .. .?
5 //@ assert this instanceof Cell; // True
6 //@ unfold state(oldVal); // Not allowed

For example:
void ReCell .set(int x) {

// Dynamic type != Cell
super .set(x);

}

Improving Support for Java Exceptions and Inheritance in VerCors May 2, 2023 46 / 57

Resolving the APF exchange problem

1. “Non-modular”
2. “Extension”
3. “Static/dynamic”

Suggested for VerCors: combine extension & static/dynamic

Improving Support for Java Exceptions and Inheritance in VerCors May 2, 2023 47 / 57

Static/dynamic

I Insight: dynamic dispatch =⇒ dynamic type
I “Generic” ** dynamic type ⇐⇒ “specific”

1 Cell c = ...;
2 c.set (3);
3
4 void Cell.set(int x);
5
6 void ReCell .set(int x);

Improving Support for Java Exceptions and Inheritance in VerCors May 2, 2023 48 / 57

Static/dynamic example

1 //@ requires state(oldVal);
2 void Cell.set(int newVal) {
3 //@ assert state@Cell (oldVal);

Improving Support for Java Exceptions and Inheritance in VerCors May 2, 2023 49 / 57

Static/dynamic trade-offs

I Benefit: modular, allows modelling parameters
I Drawback: complicated, no side-calling

Improving Support for Java Exceptions and Inheritance in VerCors May 2, 2023 50 / 57

Extension

I Insight: APFs the parent APF
I extract statement

Improving Support for Java Exceptions and Inheritance in VerCors May 2, 2023 51 / 57

extract example

I “Generic” ** instanceof ⇐⇒ “partial specific”
I “Partial specific” ** instanceof ⇐⇒ “generic”

1 Cell c = ...;
2 //@ assert c.state(oldVal);
3 //@ extract c. state@Cell (oldVal);
4 //@ assert c. state@Cell (oldVal);

Improving Support for Java Exceptions and Inheritance in VerCors May 2, 2023 52 / 57

Extension trade-offs

I Benefits:
I Straightforward to explain.
I Integrates well with VerCors.

I Drawbacks:
I Parent APF inclusion is mandatory.
I extract is read-only.

Improving Support for Java Exceptions and Inheritance in VerCors May 2, 2023 53 / 57

Suggested transformation

Java inheritance

Static/dynamic

Extension & APFs

Improving Support for Java Exceptions and Inheritance in VerCors May 2, 2023 54 / 57

Overview

Verification of concurrent software

Deductive verification

Exceptions

Inheritance

Conclusion

Improving Support for Java Exceptions and Inheritance in VerCors May 2, 2023 55 / 57

Future work

I Formal proof of correctness
I Further improving language support
I Standard library specification
I Improve theory of inheritance

Improving Support for Java Exceptions and Inheritance in VerCors May 2, 2023 56 / 57

Conclusion

I Static verifiers do not support commercial languages enough
I Abrupt termination can be encoded in exceptions
I VerCors could support inheritance through combined approaches
I Concluding:

I Full exception support is achievable
I Basic inheritance is possible with trade-offs.

Improving Support for Java Exceptions and Inheritance in VerCors May 2, 2023 57 / 57

Bonus slides

Improving Support for Java Exceptions and Inheritance in VerCors May 2, 2023 1 / 7

Name Development Viper Concurrency Exceptions Inheritance
Nagini Current Yes Full Yes Yes
Prusti Current Yes Implicit No No
Soothsharp Prototype Yes Implicit No No
Rust2Viper Prototype Yes Implicit No No
Scala2Sil Prototype Yes Implicit No No
Frama-C Current No Full No No
Verifast Current No Full Up to finally Yes
KeY Current No No Yes Yes
OpenJML Current No No Yes Yes
JaVerT No No No Yes No
K Current No Full − −
Spec# No No No Yes Yes
jStar No No Implicit No Yes
LOOP No No No Yes Yes
Krakatoa No No No Yes No
VCC No No Full − −
Caper Unclear No Implicit − −
Why3 Current No No Yes No

Improving Support for Java Exceptions and Inheritance in VerCors May 2, 2023 2 / 7

continue to break

1 l: while (p()) {
2 ...
3 continue l;
4 ...
5 }

⇒

1 l: while(p()) {
2 inner_l : {
3 ...
4 break inner_l ;
5 ...
6 }
7 }

Improving Support for Java Exceptions and Inheritance in VerCors May 2, 2023 3 / 7

return to throw

1 void m() {
2 ...
3 return v;
4 ...
5 }

⇒

1 void m() {
2 try {
3 ...
4 throw new R_m(v);
5 ...
6 } catch (R_m e) {
7 return e.value;
8 }
9 }

Improving Support for Java Exceptions and Inheritance in VerCors May 2, 2023 4 / 7

1 try {
2 loopA : while (p) {
3 while (q) {
4 try {
5 if (r) {
6 break ;
7 } else if (s) {
8 break loopA ;
9 } else {

10 return ;
11 }
12 } finally {
13 /* Ambiguity */
14 }
15 }
16
17 }
18
19 } finally {
20
21 }
22
23 }

Improving Support for Java Exceptions and Inheritance in VerCors May 2, 2023 5 / 7

Extension & locking

1 class Cell {
2 int val;
3 //@ resource lock_invariant () = Perm(val , 1\1);
4 }
5 void doWork (Cell c) {
6 synchronized (c) {
7 //@ assert c. lock_invariant ();
8 //@ extract c. lock_invariant@Cell ();
9 //@ unfold c. lock_invariant@Cell ();

10 c.val = c.val + 2;
11 //@ fold c. lock_invariant@Cell ();
12 //@ apply c. lock_invariant@Cell () -* c. lock_invariant ();
13 //@ assert c. lock_invariant ();
14 }
15 }

Improving Support for Java Exceptions and Inheritance in VerCors May 2, 2023 6 / 7

extract read-only

1 //@ resource state(int x) = Perm(val , 1\1) ** val == x;
2
3 //@ requires state(oldVal);
4 void set(Cell c, int newVal) {
5 //@ extract c. state@Cell (oldVal);
6 //@ unfold c. state@Cell (oldVal);
7 c.val = newVal ;
8 //@ fold c. state@Cell (newVal);
9 //@ assert c. state@Cell (oldVal) -* c.state(oldVal);

10 // Impossible :
11 //@ apply c. state@Cell (newVal) -* c.state(newVal);
12 }

Improving Support for Java Exceptions and Inheritance in VerCors May 2, 2023 7 / 7

	Verification of concurrent software
	Deductive verification
	Exceptions
	Inheritance
	Conclusion
	Appendix

