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“Verification”

I Verification:
1. Verify that something works
2. In relation to a specification

I Specification of a coffee machine
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Coffee machine specification

Action:
When button is pushed

Result:
Coffee must be produced

The challenge: verify an implementation against a specification
automatically, statically
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“Concurrent”

I Concurrency means: interleaving of processes
I For cappuccino, need to foam milk & make coffee

Cappuccino button pressed

Make coffee Foam milk

Blend cappuccino
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“Software”

I Anything that regulates daily life through a computer or electronic device
1. WhatsApp
2. PowerPoint
3. Internet bankieren

Improving Support for Java Exceptions and Inheritance in VerCors May 2, 2023 8 / 57



Verification of concurrent software

Verification
Ensure it works

of concurrent
Interleaved

software
Software

!
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Why verification?

I Design is trial and error
I Prevent bugs
I Automation
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Why concurrency?

(from Stanford CPUDB)
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Why software?

I Society has become dependant on software
I Therefore, we want to verify it
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Java
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Verify Java?

I Yes, with static verifiers!
I One example, topic of this presentation: VerCors
I Others:

I Verifast
I jStar
I OpenJML
I KeY
I And more...
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VerCors

I Static deductive verifier for concurrent software
I Developed at the FMT group, University of Twente
I Java, C, OpenCL, PVL
I Data race freedom, memory safety, functional correctness

Transformations

VerCors
Tool

Viper
Silver

Silicon Z3

OpenCL

OpenMP

PVL

Java

VerCors architecture
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VerCors usage

VerCors

Program
Open coffee tube

Specification
Produces coffee

Pass 3Fail 7
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So, why are there bugs?

I Problem: support for commercial programming languages
I Verifast, Nagini

I “Advanced” language features
I exceptions, inheritance, lambdas, streams
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Deductive verification of Java

Using JML annotations in comments:
1 //@ requires a >= 0 && b >= 0;
2 //@ ensures a > b ? \ result == a : \ result == b;
3 int positive_max (int a, int b) {
4 //@ assert a >= 0;
5 if (a > b) {
6 return a;
7 } else {
8 return b;
9 }

10 }
11
12 positive_max (-1, 5); // Fail
13 int x = positive_max (4, 10); // Pass
14 //@ assert x == 10; // Pass
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Separation logic

I Developed by John C. Reynolds, Peter O’Hearn, Samin Ishtiaq, and Hongseok
Yang.

I Intended to describe ownership in programs with references.
I Turns out to also work surprisingly well for concurrent programs! (with some

extensions)
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Permissions

I Perm(x , f )
I Means:

I Given heap location x ...
I f = 1 =⇒ Read/write x
I 0 < f < 1 =⇒ Read x

I Examples:
I Perm(x, 1/1)
I Perm(this.y, 1/2)
I Perm(obj.field, 3/6)
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Permissions

I A permission is a resource
I Finite: split/merge, but not duplicate
I Examples:

1 assert Perm(x, 1/1);
2 assert Perm(x, 1/2) ** Perm(x, 1/2);
3 assert Perm(x, 1/1);
4 assert Perm(x, 1/1) ** Perm(x, 1/1); // Fails!
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VerCors backend: Viper

I Developed at ETH Zürich
I Verifies simple language with permissions
I “Silver”
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Java to Silver

1: Java
1 //@ ensures \ result == 3;
2 void m() {
3 int x = 2;
4 return x + 1;
5 }

2: Silver
1 method m()
2 returns (res: Int)
3 ensures res == 3
4 {
5 var x: Int;
6 x := 2;
7 res := x + 1;
8 }
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Exceptions

1 void close () throws Exception {
2 if (f == null) {
3 throw new Exception ("f is null");
4 } else {
5 f.close ();
6 }
7 }
8
9 void doWork () {

10 try {
11 close ();
12 } catch ( Exception e) {
13 print(" Something went wrong!");
14 }
15 }
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Exception specification

1 //@ signals ( Exception e) f == null;
2 void close () throws Exception {
3 if (f == null) {
4 throw new Exception ("f is null");
5 } else {
6 f.close ();
7 }
8 }
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Abrupt termination

1 void m() {
2 l: while (p()) {
3 if (p()) {
4 throw new RuntimeException ();
5 } else {
6 break l;
7 }
8 }
9 }

No problem, right?
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Abrupt termination to goto

1 void close () {
2 l: while (p()) {
3 if (p()) {
4 goto close_end ;
5 } else {
6 goto l_end;
7 }
8 } l_end:
9 close_end : }
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Abrupt termination & finally

1 void close () {
2 while(p()) {
3 try {
4 if (p()) {
5 throw new RuntimeException ();
6 } else {
7 break;
8 }
9 } finally {

10
11 }
12 }
13 }

“finally encoding problem”
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Approaches to the finally encoding problem

1. Inlining
I Inflates AST
I Duplicates proof obligations

2. Auxiliary state
3. Via exceptions
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Approaches to the finally encoding problem

1. Inlining
2. Auxiliary state

1 if (p()) {
2 break ;
3 } else {
4 return ;
5 }

⇒

1 if (p()) {
2 mode = BREAK;
3 goto finally ;
4 } else {
5 mode = RETURN ;
6 goto finally ;
7 }

3. Via exceptions
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Approaches to the finally encoding problem

1. Inlining
2. Auxiliary state

I Creates constants to keep track of in the presence of labeled break
I Leads to non-modular finally
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Encode finally via exceptions

Consider finally with only exceptions:

1 try {
2 ...
3 } catch ( Exception e) {
4 ...
5 } finally {
6 ...
7 if (exception) {
8 goto next_handler ;
9 } else {

10 goto after;
11 }
12 }
13 after:
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Encode finally via exceptions

I This only works if there is only exceptional control flow
I That is possible:

1 l: while (p()) {
2 ...
3 break l;
4 ...
5 }

⇒

1 try {
2 while (p()) {
3 ...
4 throw new L();
5 ...
6 }
7 } catch (L e) {};
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Implemented abrupt termination transformation

Preprocessing

finally?

break, return
to goto

break, return
to throw

Exceptions
to goto

No Yes
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Coffee machine inheritance

Parent, super Child, sub
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Inheritance example

1 class Cell {
2 int val;
3 void set(int newVal ) {
4 val = newVal ;
5 }
6 }
7
8 class ReCell extends Cell {
9 int bak;

10 void set(int newVal ) {
11 bak = super.get ();
12 super .set( newVal );
13 }
14 }
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Example with plain contracts

1 //@ requires true;
2 //@ ensures val == newVal ;
3 void Cell.set(int newVal ) {
4 val = newVal ;
5 }
6
7 //@ requires true;
8 //@ ensures bak == \old(val) && val == newVal ;
9 void ReCell .set(int newVal ) {

10 bak = super.get ();
11 super.set( newVal );
12 }
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Behavioural subtyping, informally

Wherever a parent method is used, a child method should also be
usable.

In terms of contracts:

Definition (Method Subtyping)
Given a method requires P; ensures Q; f () and f ′ that overrides it, f ′ is a behavioral
subtype of f if:
I P =⇒ P ′

I Q′ =⇒ Q
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Plain contracts subtype

1 //@ requires true;
2 //@ ensures val == newVal ;
3 void Cell.set(int newVal );
4
5 //@ requires true;
6 //@ ensures bak == \old(val) && val == newVal ;
7 void ReCell .set(int newVal );

true ==> true

(bak == \old(val) && val == newVal )
==> (val == newVal )
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Example with separation logic contracts

1 //@ requires Perm(val , 1/1);
2 //@ ensures Perm(val , 1/1) ** val == newVal ;
3 void Cell.set(int newVal );
4
5 //@ requires Perm(val , 1/1) ** Perm(bak , 1/1);
6 /*@ ensures Perm(val , 1/1) ** Perm(bak , 1/1)
7 ** bak == \old(val)
8 ** val == newVal ; @*/
9 void ReCell .set(int newVal );

pre - condition Cell ==> pre - condition ReCell

Perm(val , 1/1) ==> Perm(val , 1/1) ** Perm(bak , 1/1)

7 Not subtype
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Solution: abstract predicate families

I Abbreviated: APF
I Defines “name” shared between classes
I Class can choose “contents”
I Two forms:

I “Generic”: state()
I “Specific”: state@Cell()

I “Generic” ** dynamic type ⇐⇒ “specific”
I “Specific” ⇐⇒ “contents”
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APF: Cell

1 /*@ resource state(int x) = Perm(val , 1/1)
2 ** val == x; @*/
3
4 //@ requires state( oldVal );
5 //@ ensures state( newVal );
6 void Cell.set(int newVal ) {
7 //@ unfold state( oldVal );
8 //@ unfold state@Cell ( oldVal );
9 //@ assert Perm(val , 1/1);

10 }
11
12 //@ requires state(oldVal , oldBak );
13 //@ ensures state(newVal , oldVal );
14 void ReCell .set(int newVal );
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APF: Behavioural subtype?

state( oldVal ) ==> state(oldVal , oldBak )

state(newVal , oldVal ) ==> state( newVal )

3 APFs allow behavioural subtyping
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APF exchange problem

I “Generic” ** dynamic type ⇐⇒ “specific”
I Dynamic type is not known: only subtype

I super
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APF exchange problem

1 //@ requires state( oldVal );
2 void Cell.set(int newVal ) {
3 //@ assert this == Cell; // Maybe .. .?
4 //@ assert this == ReCell ; // Maybe .. .?
5 //@ assert this instanceof Cell; // True
6 //@ unfold state( oldVal ); // Not allowed

For example:
void ReCell .set(int x) {

// Dynamic type != Cell
super .set(x);

}
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Resolving the APF exchange problem

1. “Non-modular”
2. “Extension”
3. “Static/dynamic”

Suggested for VerCors: combine extension & static/dynamic
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Static/dynamic

I Insight: dynamic dispatch =⇒ dynamic type
I “Generic” ** dynamic type ⇐⇒ “specific”

1 Cell c = ...;
2 c.set (3);
3
4 void Cell.set(int x);
5
6 void ReCell .set(int x);
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Static/dynamic example

1 //@ requires state( oldVal );
2 void Cell.set(int newVal ) {
3 //@ assert state@Cell ( oldVal );
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Static/dynamic trade-offs

I Benefit: modular, allows modelling parameters
I Drawback: complicated, no side-calling
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Extension

I Insight: APFs the parent APF
I extract statement
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extract example

I “Generic” ** instanceof ⇐⇒ “partial specific”
I “Partial specific” ** instanceof ⇐⇒ “generic”

1 Cell c = ...;
2 //@ assert c.state( oldVal );
3 //@ extract c. state@Cell ( oldVal );
4 //@ assert c. state@Cell ( oldVal );

Improving Support for Java Exceptions and Inheritance in VerCors May 2, 2023 52 / 57



Extension trade-offs

I Benefits:
I Straightforward to explain.
I Integrates well with VerCors.

I Drawbacks:
I Parent APF inclusion is mandatory.
I extract is read-only.
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Suggested transformation

Java inheritance

Static/dynamic

Extension & APFs
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Future work

I Formal proof of correctness
I Further improving language support
I Standard library specification
I Improve theory of inheritance

Improving Support for Java Exceptions and Inheritance in VerCors May 2, 2023 56 / 57



Conclusion

I Static verifiers do not support commercial languages enough
I Abrupt termination can be encoded in exceptions
I VerCors could support inheritance through combined approaches
I Concluding:

I Full exception support is achievable
I Basic inheritance is possible with trade-offs.
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Bonus slides
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Name Development Viper Concurrency Exceptions Inheritance
Nagini Current Yes Full Yes Yes
Prusti Current Yes Implicit No No
Soothsharp Prototype Yes Implicit No No
Rust2Viper Prototype Yes Implicit No No
Scala2Sil Prototype Yes Implicit No No
Frama-C Current No Full No No
Verifast Current No Full Up to finally Yes
KeY Current No No Yes Yes
OpenJML Current No No Yes Yes
JaVerT No No No Yes No
K Current No Full − −
Spec# No No No Yes Yes
jStar No No Implicit No Yes
LOOP No No No Yes Yes
Krakatoa No No No Yes No
VCC No No Full − −
Caper Unclear No Implicit − −
Why3 Current No No Yes No
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continue to break

1 l: while (p()) {
2 ...
3 continue l;
4 ...
5 }

⇒

1 l: while(p()) {
2 inner_l : {
3 ...
4 break inner_l ;
5 ...
6 }
7 }
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return to throw

1 void m() {
2 ...
3 return v;
4 ...
5 }

⇒

1 void m() {
2 try {
3 ...
4 throw new R_m(v);
5 ...
6 } catch (R_m e) {
7 return e.value;
8 }
9 }
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1 try {
2 loopA : while (p) {
3 while (q) {
4 try {
5 if (r) {
6 break ;
7 } else if (s) {
8 break loopA ;
9 } else {

10 return ;
11 }
12 } finally {
13 /* Ambiguity */
14 }
15 }
16
17 }
18
19 } finally {
20
21 }
22
23 }
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Extension & locking

1 class Cell {
2 int val;
3 //@ resource lock_invariant () = Perm(val , 1\1);
4 }
5 void doWork (Cell c) {
6 synchronized (c) {
7 //@ assert c. lock_invariant ();
8 //@ extract c. lock_invariant@Cell ();
9 //@ unfold c. lock_invariant@Cell ();

10 c.val = c.val + 2;
11 //@ fold c. lock_invariant@Cell ();
12 //@ apply c. lock_invariant@Cell () -* c. lock_invariant ();
13 //@ assert c. lock_invariant ();
14 }
15 }
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extract read-only

1 //@ resource state(int x) = Perm(val , 1\1) ** val == x;
2
3 //@ requires state( oldVal );
4 void set(Cell c, int newVal ) {
5 //@ extract c. state@Cell ( oldVal );
6 //@ unfold c. state@Cell ( oldVal );
7 c.val = newVal ;
8 //@ fold c. state@Cell ( newVal );
9 //@ assert c. state@Cell ( oldVal ) -* c.state( oldVal );

10 // Impossible :
11 //@ apply c. state@Cell ( newVal ) -* c.state( newVal );
12 }
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